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e Sustainably increasing agricultural
productivity and incomes

* Greater adaptive capacity and

resilience

* Reducing or removing greenhouse gas

emissions (where feasible)
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e Tactical: All aspects of crop and soil management

---tillage method, nutrient management, time of
sowing, crop maturity, pest and disease management

e Strategic: crop selection, crop rotations, spatial pattern
of cropping (intercrops), investment in irrigation, soil
conservation structures (bunds, terraces)

* For efficient field testing, must narrow the options to
“best bets”; crop simulation provides an essential tool

* Key issue for ex-ante assessment of climate change
impact: what are best sources of long-term weather
data?
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* First choice: Observed, high quality, 20+ years

— Tmin, Tmax, solar radiation, relative humidity,
precipitation

— See van Ittersum et al. 2013, Field Crops Res. for
justification of the 10-yr minimum for duration of
weather data for simulating crop performance with
regard to climate

* Acceptable: Observed, 3+ years of Tmin, Tmax

— Long-term datebase “propagated” (detailed
explanation in following slides)

e Last resort: gridded data (NASA-POWER Agro-
Climatic Data, CRU, NCEP)
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Source: World Meteorological Organization and NOAA Global Summary of the Day database

1048 stations with at least
3-yrs daily weather data

706 stations with at least
15-yrs daily weather data
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126 stations with 15-yrs
daily weather data with
< 10% missing days and
< 30-consecutive day gap
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O Pasture [0 Major food crops Source: Ramankutty et al., 2004
[ Cropland and Portmann et al., 2010

*Food crops include wheat, maize, rice, barely, rye, millet, sorghum, soybeans, sunflower, potatoes,
cassava, sugar cane, sugar beet, oil palm, rape seed/ canola, groundnuts/peanuts, pulses



Global coverage
million km2 | billion ha | 7° ©F fotal land
area

Land area 134.0 13.4
Agricultural land 49.6 5.0 37%
Pasture/fodder crops 35.0 3.5 26%
Cropland 14.6 1.5 11%
Food Crops* 9.5 0.9 @

Source: FAOSTAT and Portmann et a., 2010 based on the year 2000

*Food crops include wheat, maize, rice, barely, rye, millet, sorghum, soybeans,
sunflower, potatoes, cassava, sugar cane, sugar beet, oil palm, rape seed/ canola,
groundnuts/peanuts, pulses



e Tactical: All aspects of crop and soil management

---tillage method, nutrient management, time of
sowing, crop maturity, pest and disease management

e Strategic: crop selection, crop rotations, spatial pattern
of cropping (intercrops), investment in irrigation, soil
conservation structures (bunds, terraces)

* For efficient field testing, must narrow the options to
“best bets”; crop simulation provides an essential tool

e Key issue for ex-ante assessment of climate change
impact: what are best sources of long-term weather
data? Top down versus bottom up.........
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coarser gridded
databases
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local, site-specific
databases
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Down-scaling, “top-down”
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Up-scaling, “bottom-down”
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Global Change Biology

Global Change Biology (2013), doi: 10.1111/ gcb.12302

Impact of derived global weather data on simulated crop
yields

JUSTIN VAN WART, PATRICIO GRASSINI and KENNETH G. CASSMAN
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 685830915, LISA

Abstract

Crop simulation models can be used to estimate impact of current and future climates on crop yields and food secu-
rity, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops
are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete ter-
restrial coverage are available, typically derived from: (i) global circulation computer moedels; (ii) interpolated
weather station data; or (iii) remotely sensed surface data from satellites. The present study’s objective is to evaluate
capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as
benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs
(CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China,
USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained
weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based
on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors
(RMSEs) that were 26—72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using
observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-
POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE
of 12-19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural
productivity in current and future climates are highly uncertain. An alternative approach would impose a climate
scenario on location-specific observed daily weather databases combined with an appropriate upscaling method.



Table 1 Clasification of global weather databases and examples of published studies using these databases to understand current
ard future agricubural productvity. Weather databases usad in the present study have been urderlned

Tirme Referance and Creospatial
Classification  Soures step e irberval COVerage Reported vartables®  Examples
Point-based  Weather Daily HFRCCt, CMAL, Regional T orgene T eroes PRECIS Sinclair & Rawlins
data statiores DWD§ wirid spesd, (1943), Wang &
{19832 Tdew Temp, EH, Cormar (15658),
VAPOT pressure, Peng et al (2004},
radiation Cerassind ef al. (20060,
MHOA AY Calasbal Terem, Toreas, precip, Cassman el al (2000}
{1 020010 Tdew, wind speed,
EH, vapor pressune
Gridded Interpolated Diaily NCEP/DOE Global Teram Toruns, Liobell & Asmer (2008,
data and gemerated Beanalysiz I1|| 25% « 259 wind speed, precip,  Nemuani ef al. (2003),
based on data (1979-2010) fea. 70 000 ke’ RH, wind speed, Schlenker & Roberts
fromm weathar radiaton (200, Twine &
stators, Eucharik (20050
satellites, ERA-Trterim Global (15% x 1.5 T Tonee Ristter (1993,
ocean buoys, Reanaly=sis {ca. 25 000 k) wirid spessd, de Witet al 2000}
ete. (19892013 precip, EH,
wirid spesd,
rad iatiomn
Interpolated Monthly  CRUOS (3100,  Global T i Toramar Fischer & al. (N2,
from weathar Univ. Dalawara 05% = (L5) botal precip, Foley et al (2005),
statiores Climate Dataset  {ea. 3000 km) o, of wet days, Bordeau &t al {200,
{1961 2000 VAPOT préssure Laobell (XN,
Laobel o al. (2008,
Battisti & Naylor
(2009, Licker et al
(2010}, Lobell & al
(2011}
Average WorddQlimit Global T i Toramar Ortiz et al. (2008),
S(-year  (1950-2000) fea 1 km') total precip, MNekon ef al (2000
mgarthly . of wet days
MEAn
matellite Diaily NASA-Powerf§  Global 1% = 17 p P P Lobell & al. (XN
(198320100 {ea. 12 000 km) precip, Tdew,
except precip radiation, RH
(1997-2010) Van Wart et al., 2013)




Compared simulation of crop yields with good quality weather station data versus
gridded weather data for rainfed Maize (USA), irrigated rice (China), and rainfed
wheat (Germany); 19 years, four sites in each country. Fig. 1, Van Wart et al., 2013
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Control data on X-Axis, versus: (A) NOAA “real” + NASA-SR, and three gridded sources (B)
National Center for Environmental Prediction--DOE, (C) Climate Research Unit—Univ. East

Anglia, and (D) NASA-POWER dataset. Fig. 2, Van Wart et al. 2013.
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Elobal Change Biology

Global Change Biology (2013), doi: 10.1111 / gcb.12302

Impact of derived global weather data on simulated crop
yields

JUSTIN VAN WART, PATRICIO GRASSINI and KENNETH G. CASSMAN
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 685830915, LISA

We conclude that results from studies that rely on gridded weather databases to
simulate agricultural productivity in current and future climates are highly
uncertain. An alternative approach would be to impose a climate scenario on
location-specific weather databases combined with an appropriate upscaling
method.

Fl r

USA maize, and wheat in Germany. Simulations of Y§§ and Yw based on recorded daily data from well-maintained
weather stations were taken as the control weather daj (CWD). Agreement between simulations of Yp or Yw based
on CWD and those based on GWD was poor with latter having strong bias and large root mean square errors
(RMSEs) that were 26—72% of absolute mean yield acr§gss locations and years. In contrast, simulated Yp or Yw using
observed daily weather data from stations in the NOgA database combined with solar radiation from the NASA-
POWER database were in much better agreement witlflYp and Yw simulated with CWD (i.e. little bias and an RMSE
of 12-19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural
productivity in current and future climates are highly uncertain. An alternative approach would impose a climate
scenario on location-specific observed daily weather databases combined with an appropriate upscaling method.




Source: World Meteorological Organization and NOAA Global Summary of the Day database

1048 stations with at least 706 stations with at least 126 stations with 15-yrs
3-yrs daily weather data 15-yrs daily weather data daily weather data with
< 10% missing days and

< 30-consecutive day gap
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1. Use the best available existing gridded weather
data (not robust for simulating crop yields)

2. Commercial sources of weather data (sources
unknown and often a black box)

3. Propagation of long-term weather data for
locations with only a few years of observed
weather data (how many years? How well do
propagated weather data work?)
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Location-specific calibration of NASA Tmax and

Tmin based on correlations with ground-
measured Tmax and Tmin for at least 3 years

Solar radiation from NASA-POWER

Humidity is derived from NASA Tdew (unless
measured Tdew or RH are available)

TRMM rainfall data

Van Wart J, Grassini P, Yang HS, Claessens L, Jarvis A, Cassman KG. 2015. Creating long-
term weather data from thin air for crop simulation modelling. Agricultural and Forest

Meteorology, In Press




(M) Maize

(W) Wheat m»Average long-term simulated yield
(R) Rice (tha™) "7 based on observed weather data
Dusseldorf (W) { 7.2 [
Leipzig (W) 1 8.9 O
Nanning (R) { 4.8
ChongQing (R) { 6.3 O vl [ +—
Gushi(R) {1 6.6 v
North Platte (M) 4 9.0 v
Mead (M) { 12.7 H —]
DeKalb (M) {1 15.7 v ]
Bondville (M) { 16.5 v
Oliveros (M) 1 9.0 -I—|
Balcarce (M) {1 10.5
Melkassa (M) { 6.5 |B v
Katumani (M) { 6.1 v O
Gaoua(M) {1 7.4
Embu (M) { 6.0 v B
Dedougou (M) {1 6.3
Choma (M) { 6.9  —
Chapata (M) {1 10.0 v
-60% -40% -20% 0% 20% 40%

M MarkSim weather generator
Vv NASA-POWER data
.=+ Propagated weather data *
OWD: Observed weather data

Deviation from long-term average simulated yields using OWD (%)

* Each box plot
represents the
distribution of long-
term average simulated
yields based on the
propagated weather
files generated based
on all possible subsets
of 3 years of observed
weather data used to
calibrate NASA Tmax
and Tmin

Van Wart J, Grassini P, Yang HS, Claessens L, Jarvis A, Cassman KG. 2015. Creating long-term weather data
from thin air for crop simulation modelling. Agricultural and Forest Meteorology, In Press
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Gridded weather, soil, and crop
data allows full coverage but
has large uncertainty

Simulation unit: grid

Too coarse to be locally
relevant and difficult to
validate

number of locations for
data collection
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GYGA ‘bottom-up’ approach
- D r e ——
LOCATION A = &
vy Soil 2
Targeting a tractable Simulation unit: Upscaling from location to

location x soil x crop
system combination
within a climate zone

region or country by a
robust CZ scheme

(]

" Full coverage without
loosing local relevance
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e Crop-specific harvested area

Weather station buffer zones with large crop area

Climate zones

Crop model simulations

“““““ L Ja Actual yields

< Yield gaps

From: Van Bussel et al.
2015. Field Crops Res.
In Press
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Location

Climate zone

Country

HU-B0
| LR 90-10.0
W z20-30 10.0-110
B ro-20

. W zo-1z0
oo | EELRT
W <o-150

=]

more than 150

Coefficient of
variation (%)

upto 5%
5%-10%
10%-15%
15%-20 %
20%-25%
25%-30 %
30%-35%
35%-40% -
W mors than 40 %




Van Wart et al., 2013. Use of agro-climatic zones to upscale simulated
crop yield potential. Field Crops Research 143, 44-55.

High Temp.

- - Seasonality -
Wet ‘ Warmer

Low Temp.
Seasonality




GYGA climate-zone scheme captures spatial weather variation with a tractable number of
climate zones to allow focus on the most relevant areas for crop production to upscale results

West Africa: latitudinal rainfall gradient
leads to well-defined climate zones

East Africa: complex topography leads to
small climate zones of irregular shapes

Country #sites Crop area

coverage (%)

] Country # sites Crop area
coverage (%)
Ethiopia 24 58
Kenya 14 55
Tanzania 13 67
Uganda 12 76
Zambia 11 85




* Uniformity of climate variables governing
crop growth, development and yield

 Not too fine (too many), not too coarse
(too few)

e Climate zone units can facilitate technology
evaluation and extension (extrapolation
domains)

* GYGA climate zonation scheme: example
from Australia and Argentina
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Australian wheat yield gaps in a global context:
Global Yield Gap Atlas (GYGA) Project

GYGA climate zones used in Australian wheat GYGA analysis: CZ #6202 contains 7% of total
Australian cereal area, and has a homologue in Argentina where they also grow wheat and
other crops (Source: Hochman and Gobbett, CSIRO; Grassini et al., Univ. Nebraska)

High temp. -
Argentina Australia

seasonality

2.2 2.0
5.8 4.5
3.6 2.5
38% 44%

Wet Low temp. season 0 3,000 km
seasonality L 1




Solar radiation (MJ m-2 d'l)

Total rainfall (mm)

Weather comparison between analogous climate zones:

40

Australia and Argentina
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Source: Hochman and
Gobbett, CSIRO;
Grassini et al., Univ.
Nebraska




Can Australia emulate Argentina in CZ 6202?

Candidate Systems for Australia:

1. Continuous wheat
2. Continuous maize
3. Opportunity wheat —maize double cropping (60 mm PAW for each crop)
4. Opportunity wheat —maize double cropping (90 mm PAW for each crop)
5. Wheat-mungbean double cropping
6. Opportunity wheat-mungbean double cropping (60 mm PAW for mungbean)
System Wheat yield Maizeyield Mungbeanyield Annual Income Gross
and StDev and StDev and StDev average Ccv Margin
income
(t/ha) (t/ha) (t/ha) (AUD) (%) (AUD/ha/yr)
1 4.82 (0.65) - - 1204 14 404
2 - 4.76 (2.34) 1572 49 692
3 4.03(1.11) 3.76 (2.71) 2125 39 369
4 424 (1.27) 4.58(2.60) - 2556 37 739
5 4.55 (0.72) - 1.49 (0.47) 2008 20 833
6 4.57 (0.76) 1.62 (0.29) 2133 14 799

=Source: Hochman and Gobbett, CSIRO %




* Uniformity of climate variables governing
crop growth, development and yield

 Not too fine (too many), not too coarse
(too few)

e Climate zone units can facilitate technology
evaluation and extension (extrapolation
domains)

* GYGA climate zonation scheme appears to
be robust!
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Identify minimum number of weather stations (WS) and associated
100-km buffer zones within a robust climate zone (C2Z) framework

Obtain data required for crop or cropping system simulation within
selected WS buffer zones (soil types, crop calendars, sowing rules)

Impose climate change scenario, including differences in max/min
temps, seasonality, variability

Using a well-validated crop model, simulate current and potential CSA
alternatives; minimum 30 yr weather data to also estimate yield
variability

To estimate production potential on existing crop land within each
weather station buffer zone, assume 85% and 75% of potential yields
for irrigated and rainfed systems, respectively

Upscale using the GYGA scaline approach (weighted for crop area):
WS buffer zones ==p climate zones —» country —p region —» global
Newﬁgl%a i% gfpbi ﬂgsem 4 Water/m Food
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e Strengths

— Provides direct evaluation of temperature and [CO2] effects

— Results can be validated for ex-ante evaluations in current
climate, or in climate zone analogs

— Avoids use of gridded weather data (CRU, NCEP, NASA-POWER)
which are not robust for simulation of crop yields

e Weaknesses

— Cannot account for changes in rainfall (sensitivity analysis?)

— Difficulty in accounting for changes in variability of
temperature and rainfall due to climate change

— Cannot estimate agricultural potential of non-cultivated areas
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* Global coverage of existing farm land with open
access to high long-term daily weather data suit
of sufficient quality to support tactical and
strategic decisions on crop, soil, and farming
system management

— max/min temperature, rainfall, solar radiation,
humidity, wind speed

— 30-years minimum, since 1980
— Publicly available, no cost

NeB"VERS”YlO(aF ‘?‘4‘; Global Yield
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Both NOAA and MESONET:

University of Nebraska

* National Oceanic and
Atmospheric Administration
(NOAA): Stations are typically
located in cities and airports
and only record daily
temperature and precipitation

* State MESONET systems:
Developed for agriculture and
located in agricultural areas
with all required variables for
crop simulation (daily
radiation, temperature,
precip, humidity, wind speed)

Courtesy of: F. J. Morell, Univ. of Nebraska
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Spatial Coverage by state:

316 stations total (11%)

Only Oklahoma has
excellent coverage

* Three states have
reasonable coverage (IL,
NE, ND)

e Most states have poor
coverage (IA, IN, KS, KY,
OH, MI, MN, MO, SD)

0 75 150 300 Miles
T T

T T T T T T T T T T T T —T
106° W 104° W 102° W 100° W 98° W 96°W 94°W 92°W 90°W 88°W 86°W B84°W 82°W B0°W T8"W
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Courtesy of: F. J. Morell, Univ. of Nebraska

0\ Water/»Food

¥ ROBERT B.DAUGHERTY INSTITUTE
University of Nebraska




Source: World Meteorological Organization and NOAA Global Summary of the Day database

1048 stations with at least
3-yrs daily weather data

706 stations with at least
15-yrs daily weather data
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Gap Atlas

126 stations with 15-yrs
daily weather data with
< 10% missing days and
< 30-consecutive day gap
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A “bottom-up” scaling approach should be a
complement to current reliance on “top-down”
assessment of climate change impact on crop
production and CSA options

— GYGA geospatial approach appears to be robust

* Investment in good quality weather data in
agricultural regions and open access for farmers
worldwide is the single most important priority
for enhancing capacity to deal with climate

change
— Good news, relatively low cost and getting cheaper!
Nebiaska - &) WaterizFood

Lincoln S
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